3.24.76 \(\int \frac {d+e x}{\sqrt {a+b x+c x^2}} \, dx\) [2376]

Optimal. Leaf size=68 \[ \frac {e \sqrt {a+b x+c x^2}}{c}+\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2}} \]

[Out]

1/2*(-b*e+2*c*d)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(3/2)+e*(c*x^2+b*x+a)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {654, 635, 212} \begin {gather*} \frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2}}+\frac {e \sqrt {a+b x+c x^2}}{c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/Sqrt[a + b*x + c*x^2],x]

[Out]

(e*Sqrt[a + b*x + c*x^2])/c + ((2*c*d - b*e)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*c^(3/2
))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {d+e x}{\sqrt {a+b x+c x^2}} \, dx &=\frac {e \sqrt {a+b x+c x^2}}{c}+\frac {(2 c d-b e) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{2 c}\\ &=\frac {e \sqrt {a+b x+c x^2}}{c}+\frac {(2 c d-b e) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{c}\\ &=\frac {e \sqrt {a+b x+c x^2}}{c}+\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.30, size = 65, normalized size = 0.96 \begin {gather*} \frac {e \sqrt {a+x (b+c x)}}{c}+\frac {(-2 c d+b e) \log \left (c \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )}{2 c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/Sqrt[a + b*x + c*x^2],x]

[Out]

(e*Sqrt[a + x*(b + c*x)])/c + ((-2*c*d + b*e)*Log[c*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/(2*c^(3/2)
)

________________________________________________________________________________________

Maple [A]
time = 0.85, size = 82, normalized size = 1.21

method result size
risch \(\frac {e \sqrt {c \,x^{2}+b x +a}}{c}-\frac {\ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right ) b e}{2 c^{\frac {3}{2}}}+\frac {d \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}}\) \(81\)
default \(e \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )+\frac {d \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}}\) \(82\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

e*(1/c*(c*x^2+b*x+a)^(1/2)-1/2*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))+d*ln((1/2*b+c*x)/c^(1/2)
+(c*x^2+b*x+a)^(1/2))/c^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 3.05, size = 168, normalized size = 2.47 \begin {gather*} \left [\frac {4 \, \sqrt {c x^{2} + b x + a} c e - {\left (2 \, c d - b e\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} + 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right )}{4 \, c^{2}}, -\frac {{\left (2 \, c d - b e\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - 2 \, \sqrt {c x^{2} + b x + a} c e}{2 \, c^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(c*x^2 + b*x + a)*c*e - (2*c*d - b*e)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x
+ a)*(2*c*x + b)*sqrt(c) - 4*a*c))/c^2, -1/2*((2*c*d - b*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x +
 b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - 2*sqrt(c*x^2 + b*x + a)*c*e)/c^2]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x}{\sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d + e*x)/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [A]
time = 1.19, size = 65, normalized size = 0.96 \begin {gather*} \frac {\sqrt {c x^{2} + b x + a} e}{c} - \frac {{\left (2 \, c d - b e\right )} \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{2 \, c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

sqrt(c*x^2 + b*x + a)*e/c - 1/2*(2*c*d - b*e)*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/c^(
3/2)

________________________________________________________________________________________

Mupad [B]
time = 1.32, size = 80, normalized size = 1.18 \begin {gather*} \frac {e\,\sqrt {c\,x^2+b\,x+a}}{c}+\frac {d\,\ln \left (\frac {\frac {b}{2}+c\,x}{\sqrt {c}}+\sqrt {c\,x^2+b\,x+a}\right )}{\sqrt {c}}-\frac {b\,e\,\ln \left (\frac {\frac {b}{2}+c\,x}{\sqrt {c}}+\sqrt {c\,x^2+b\,x+a}\right )}{2\,c^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)/(a + b*x + c*x^2)^(1/2),x)

[Out]

(e*(a + b*x + c*x^2)^(1/2))/c + (d*log((b/2 + c*x)/c^(1/2) + (a + b*x + c*x^2)^(1/2)))/c^(1/2) - (b*e*log((b/2
 + c*x)/c^(1/2) + (a + b*x + c*x^2)^(1/2)))/(2*c^(3/2))

________________________________________________________________________________________